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ABSRACT 

 
 

Since January 2008, the U.S. Geological Survey has been providing free terrain-corrected 

and radiometrically calibrated Landsat data via the Internet. This revolutionary data policy 

provides the opportunity to use all the data in the U.S. Landsat archive and to consider the 

systematic utility of Landsat data for long-term large-area monitoring. With the advent of 

this free data policy, analysis ready data (ARD) are needed in user community to minimize 

Landsat pre-processing effort. 

 

Built on the success of the conterminous United States (CONUS) Web Enabled Landsat 

Data (WELD) product, the NASA funded global WELD (GWELD) project seeks to 

provide global coverage Landsat ARD, specifically monthly and annual Landsat 30 m 

information for any terrestrial non-Antarctic location for six 3-year epochs spaced every 5 

years from 1985 to 2010. They are generated from every available Landsat 4 and 5 

Thematic Mapper (TM) and 7 Enhanced Thematic Mapper plus (ETM+) image held in the 

U.S. Landsat archive. The products define the “best” Landsat observation data available at 

the 30 m pixel tile location over monthly and annual product reporting periods. The 

GWELD products are developed specifically to provide consistent data that can be used to 

derive land cover as well as geophysical and biophysical products for regional assessment 

of surface dynamics and to study Earth system functioning. 

 

The GWELD products are processed to nadir BRDF-adjusted surface reflectance (NBAR) 

for the reflective wavelength bands and to top of atmosphere (TOA) brightness temperature 

for the thermal bands. The products are defined in the same coordinate system and align 

precisely with the MODIS land products tiles. They aim to provide the first instance of 

global-scale science-quality Landsat data with a level of pre-processing comparable to the 

NASA MODIS land products. 

 

 

 

Cite as 

Roy, D.P., Zhang, H.K., Global Web Enabled Landsat Data (GWELD) Products - 

Algorithm Theoretical Basis Document, Version 3.0, July 1 2019. 

 
 

Note this Algorithm Theoretical Basis Document may be changed in response to a formal 

NASA review process and as the GWELD product versioning is updated. 
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1.0 OVERVIEW 

 
The overall objective of NASA’s Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) program is to support projects providing Earth science data 

products and services driven by NASA’s Earth science goals and contributing to advancing 

NASA’s “missions to measurements” concept. Building on the Conterminous United 

States and Alaska WELD products the processing was expanded to global scale to provide 

monthly and annual Landsat 30 m information for any terrestrial non-Antarctic location for 

six 3-year epochs spaced every 5 years from 1985 to 2010. Herein the products will be 

referred to as global WELD (GWELD) products. 

 
The GWELD products are developed specifically to provide consistent near-global 

coverage data that can be used to derive land cover, geophysical and biophysical products 

for assessment of surface dynamics and to study Earth system functioning. The GWELD 

products are processed so that users do not need to apply the equations and spectral 

calibration coefficients and solar information to convert the Landsat TM/ETM+ digital 

numbers to reflectance and brightness temperature, or atmospherically correct the 

reflective wavelength data, or correct for bi-directional anisotropy present in the reflective 

wavelength data, and successive products are defined in the same coordinate system and 

align precisely with the MODIS land products tiles, making them simple to use for multi- 

temporal applications. The GWELD products include spatially explicit quality assessment 

information, and appropriate metadata to enable further processing while retaining 

traceability of input data provenance. The GWELD products provide near global coverage 

Landsat Analysis Ready Data (ARD). 

 
The GWELD processing, based on heritage techniques of MODIS data processing, is 

applied to all available Landsat TM/ETM+ acquisitions achieved in the United States 

Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, 

(~125,000 Landsat TM/ETM+ images per year). Monthly and annual global WELD 

products are generated for six 3-year epochs spaced every 5 years from 1985 to 2010 and 

made freely available to the user community. 
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2.0 VERSION 3.x GWELD PRODUCT THERORETICAL DESCRIPTION 

 
2.1 Input Landsat data 

 
The GWELD products are made from Landsat 4 and 5 Thematic Mapper (TM) and Landsat 

7 Enhanced Thematic Mapper plus (ETM+) acquisitions. The Landsat 4 was launched on 

July 16 1982 and had been working until December 14, 1993 when the satellite lost its 

ability to transmit data. The Landsat 5 was launched on March 1, 1984 and had been 

observing the Earth surface until January 2013, when Landsat 5’s instruments were 

powered off and the satellite was moved into a lower orbit. Landsat 7 was launched on 

April 15, 1999 and has been continuing to operate until present time. Landsat 4, 5 and 7 

satellites maintain approximately 710 km sun-synchronous circular and 98.2° inclined 

near-polar orbits and have a 15° field-of-view that capture approximately 185 km × 170 

km scenes defined in the Worldwide Reference System-2 (WRS2) path (groundtrack 

parallel) and row (latitude parallel) coordinates (Arvidson et al. 2001). Adjacent Landsat 

orbit paths are sensed 7 or 9 days apart and the same orbit path is sensed every 16 days, 

i.e., providing a 16 day revisit capability (Figure 1). Landsat 5 orbit was phased to the same 

Landsat 4 and Landsat 7 orbit to ensure a 8 day full earth coverage for Landsat 4 and 5 and 

for Landsat 5 and 7 (Hassett and Johnson 1984; Arvidson et al. 2006). 

 
Every sunlit scene (solar zenith angle <75◦) overpassed over the conterminous U.S. 

(CONUS) and main islands are acquired and archived at the USGS EROS (Ju and Roy 

2008). For each sensor, scenes that are first overpassed between January 1 to 13 (January 

14 for leap years) are overpassed a total of 23 times per year, while scenes first overpassed 

after January 14 (January 15 for leap years) are overpassed 22 times per year, i.e., each 

Landsat scene can be acquired a maximum of 22 or 23 times per year (Ju and Roy 2008). 

In many regions outside CONUS fewer images are acquired for a variety of reasons 

(Loveland and Dwyer 2012; Kovalskyy and Roy 2013). Notably, Landsat data acquired by 

international ground stations are being consolidated into the USGS EROS archive by the 

Landsat Global Archive Consolidation (LGAC) effort that began in 2010 (Wulder et al. 

2016). 
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Figure 1 Landsat Orbit Geometry / Swath Pattern 

 
Each Landsat image is approximately 183 km × 170 km but only Landsat imagery acquired 

over land and coastal areas and certain islands are acquired. Figure 2 shows every global 

Landsat WRS-2 path/center (nadir) scene location (Wulder et al. 2016). 

 
 

Figure 2 Landsat Path and Row locations. An area in the south east United States is 

highlighted. 
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Over the period of the GWELD project the Landsat image format and contents has changed. 

Notably, the Landsat Science Team helped advocate successfully for a 

processing/reprocessing collection scheme for Landsat. The Landsat Collection 1 products 

became available in 2017 and are now the standard products. They are designed to provide 

a consistent among-sensor archive to support time series analyses while controlling 

continuous improvement of the archive through periodic reprocessing, analogous to the 

MODIS processing/reprocessing approach (Justice et al. 2002). The Landsat Collection 1 

products (https://www.usgs.gov/land-resources/nli/landsat/landsat-collections) have more 

rational filenames, improved per-pixel cloud mask, new quality data, improved calibration 

information, and improved product metadata including metadata that enable view and solar 

geometry calculation with code provided to us by the Landsat geolocation team. 

 
Both the pre-Collection and the Collection 1 Landsat data are provided as 185 km × 170 

km scenes defined in the WRS2 path (groundtrack parallel) and row (latitude parallel) 

coordinates in the Universal Transverse Mercator (UTM) map projection (WGS84 datum) 

in GeoTIFF format. 

 
Some of the GWELD products were made using pre-Collection and some were made using 

Collection 1 input data. We do not anticipate significant differences due to the GWLED 

processing. 

 
The GWELD products for the 2010 epoch (36 monthly products and annual products for 

2009, 2010 and 2011) were made using pre-Collection Landsat input data. They are 

denoted as Version 3.0 products. Specifically, the pre-Collection Level-1 Precision and 

Terrain (L1TP) corrected data were used. The Level 1T processing includes radiometric 

correction, systematic geometric correction, precision correction using ground control 

chips, and the use of a digital elevation model to correct parallax error due to local 

topographic relief. While most pre-Collection Landsat data were processed as L1T, certain 

acquisitions did not have sufficient ground control or elevation data necessary for precision 

or terrain correction respectively. In these cases, the best level of correction was applied 

and the data were processed to Level 1G-systematic (L1G) with a geolocation error of less 

https://www.usgs.gov/land-resources/nli/landsat/landsat-collections
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than 250 meters (1) (Lee et al. 2004). The L1T file metadata records if the acquisition 

was processed to L1T or L1G. Only L1T data with geometry RMSD<30 m recorded in the 

metadata were used to make the GWELD 2010 epoch products. This was necessary to 

reduce the impact of L1G misregistration errors on the monthly and annual products (Roy 

2000). 

 
The GWELD products for the other epochs are made using Collection 1 Landsat input data. 

They are denoted as Version 3.1 products. As before, only L1T data with geometry 

RMSD<30 m recorded in the metadata are used. The processing also takes advantages of 

some of the new features of the Landsat Collection 1 data (e.g., new metadata for per-pixel 

solar and view geometry calculations). 

 
Given the considerable global Landsat data volume (~125,000 Landsat images/year) the 

GWELD products are generated on the NASA Earth Exchange (NEX) high performance 

super computer (https://nex.nasa.gov/nex/) with an output volume of 24TB/year. The NEX 

pulled the Landsat acquisitions processed by the U.S. Landsat project from the USGS 

EROS and processed the data using the GWELD codes. The generated products are then 

sent back to the USGS EROS for dissemination. 

 
2.2 Angular geometry computation 

 
The Landsat viewing vector ( = view zenith angle, view azimuth angle) and the solar 

illumination vector (' = solar zenith angle, solar azimuth angle) are defined for each 

Landsat 30 m pixel. 

 
For the Collection 1 data (GWELD version 3.1), the Landsat per-pixel solar and viewing 

angles were calculated using the Landsat Angles Creation Tool provided by USGS 

(https://www.usgs.gov/land-resources/nli/landsat/solar-illumination-and-sensor-viewing- 

angle-coefficient-files) and using the angle coefficient file available with each Collection 

1 L1TP file. 

https://nex.nasa.gov/nex/
https://www.usgs.gov/land-resources/nli/landsat/solar-illumination-and-sensor-viewing-angle-coefficient-files
https://www.usgs.gov/land-resources/nli/landsat/solar-illumination-and-sensor-viewing-angle-coefficient-files
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For the pre-Collection data (GWELD version 3.0), the solar illumination vector is 

computed using an astronomical model parameterized for geodetic latitude and longitude 

and time following the approach developed for MODIS geolocation (Wolfe et al. 2002). 

Computer code provided by Reda and Andreas (2005) was adapted to calculate the solar 

illumination vector for each Landsat pixel. This astronomical model is parameterized using 

the L1T UTM pixel coordinate data and the scene centre acquisition time available in the 

L1T metadata. The viewing vector can be computed precisely following the procedures 

described in the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Image Assessment 

System (IAS) if the satellite orientation is known. However, as this information is not 

provided in the L1T metadata, an alternative approach is adopted. The viewing vector is 

computed by first computing a vector normal to the surface of the WGS84 Earth model for 

the geodetic pixel coordinate, then the unit vector from the geodetic coordinate to the 

modeled satellite position, adjusting for the sensor-satellite attitude, and then the viewing 

vector zenith and azimuth components are derived using standard trigonometric formulae 

(Roy et al. 2008). Thus the viewing zenith (θ) and azimuth ( ) for the ground pixel A can 

be determined by Equations [1] and [2], given the locations of the satellite and the ground 

pixel (Figure 3). 

 
The challenge is to estimate the satellite position. Nominally, the Landsat orbit follows the 

World Reference System-2 (WRS-2) with an orbital average altitude of 715.5 km and with 

each acquisition composed of 375 scans. Therefore, the satellite path can be estimated from 

the central location of each scan. The Landsat 15° field of view is swept over the focal 

planes by a scan mirror. The detectors are aligned in parallel rows on two separate focal 

planes: the primary focal plane, containing bands 1-4 and 8, and the cold focal plane 

containing bands 5, 6, and 7. The Landsat TM/ETM+ band 4 lies closest to the focal plane 

center with a displacement of around 10.4 IFOV to the sensor optical axis and is thus used 

to estimate the scan centers and the satellite positions for each scan. 
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Figure 3 Landsat TM/ETM+ viewing geometry 
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The edge pixels of the Band 4 image (that lies closest to the optical axis) are located and 

straight lines are fitted to determine the scene edges. The scene image is divided into 375 

scans from north to south and the center for each scan is computed as: 
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[3] 

 

 

where P
i 
Scan, C is the scan center, and PNE, C and PSE,C 

are the centers of the north and south 

 

edges respectively. The satellite position 

centers by 10.4 IFOV as: 

P
i 
Satellite is estimated by displacing the scan 
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P
i 
Satellite 

= Pi Scan,C + 10.4 * 30.0 i = 0, 1,. .. 374  
[4] 

 

 

This approach is computationally efficient although the accuracy of the viewing vector is 

a function of the errors of the L1T pixel geolocation and the spatial relations between the 

pixel and the sensor which may vary temporally. 

 
2.3 Reflective wavelength surface reflectance NBAR and TOA brightness 

temperature computation 

 

The GWELD processing is applied to all the Landsat TM/ETM+ bands, except the ETM+ 

15 m panchromatic band, i.e., the 30 m blue (0.45-0.52m), green (0.53-0.61m), red 

(0.63-0.69m), near-infrared (0.78-0.90m), and the two mid-infrared (1.55-1.75m and 

2.09-2.35m) bands, and the 60 m thermal (10.40-12.50m) bands are processed as below. 

 
2.3.1 Top of Atmosphere (TOA) reflectance computation 

For the Collection 1 Landsat data, the calibration is derived using various on-board and 

vicarious calibration techniques (Markham and Helder 2012; Morfitt et al. 2015). A 

reflectance-based calibration is used as it has higher accuracy than the pre-Collection 

radiance-based approach (Markham et al. 2016). In the global WELD code the stored 

digital numbers are converted to reflectance as: 

 

= 
g  DN + b 

cos 
s [5] 

where ρλ is the top of atmosphere (TOA) reflectance (unitless), and DNλ are the reflectance 

based sensor calibration gain and bias coefficients stored in the Collection 1 image 

metadata, DNλ is the 8-bit DN values (0-255), and θs is solar zenith angle (radians) derived 

at 30 m resolution using the method described in Section 2.2 for the Collection 1 data. 

 
For the pre-Collection Landsat data, a radiance-based calibration is used (Thorne et al. 

1997). In the global WELD code the stored digital numbers are first converted to spectral 

radiance (units: W m-2 sr-1 μm-1) using the sensor calibration gain and bias coefficients 

 
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stored in the Landsat L1T file metadata. Then the radiance is converted to top of 

atmosphere reflectance as: 

 = 
  L  d 2 

 

ESUN   coss [6] 

where ρλ is the top of atmosphere (TOA) reflectance (unitless), Lλ is the TOA spectral 

radiance (W m-2 sr-1 μm-1), d is the Earth-Sun distance (astronomical units), ESUNλ is the 

mean TOA solar spectral irradiance (W m-2 μm-1), and θs is solar zenith angle (radians) 

using the method described in Section 2.2 for the pre-Collection data. The quantities 

ESUNλ and d are tabulated by Chander et al. (2009). 

 

2.3.2 Atmospheric correction of the TOA reflectance bands 

The impact of the atmosphere is variable in space and time and is usually considered as 

requiring correction for quantitative remote sensing applications (Ju et al. 2012). Consistent 

Landsat surface reflectance data are needed in support of high to moderate spatial 

resolution geophysical and biophysical studies. The TOA reflectance (Section 2.3.1) are 

atmospherically corrected to surface reflectance. 

 
The established Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

(Masek et al. 2006) method is used for atmospheric correction. The LEDAPS uses the 6SV 

radiative transfer code which has an accuracy better than 1% over a range of atmospheric 

stressing conditions (Kotchenova et al. 2006). The LEDAPS algorithm (Masek et al. 2006) 

derives the aerosol optical thickness independently from each Landsat acquisition using 

the Kaufman et al. (1997) dense dark vegetation approach and assuming a fixed aerosol 

type. The LEDAPS method also uses the NCEP/NCAR 6-hourly Reanalysis water vapor 

data and NASA’s EP TOMS ozone data and surface atmospheric pressure from 

NCEP/NCAR 6-hourly Reanalysis data. 

 

2.3.3 Reflective wavelength reflectance BRDF normalization 

Most terrestrial surfaces are not Lambertian and so directional reflectance effects are 

present in satellite reflectance retrievals due to variable solar-surface-sensor geometry 

(Schaaf et al. 2002). Terrestrial reflectance anisotropy varies with the physical arrangement, 

 
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structural variability, and optical properties of the surface components (soil, grass, trees, 

etc.) and nominally may vary with the land cover type and condition. Directional 

reflectance effects, commonly described by the bidirectional reflectance distribution 

function (BRDF) (units of sr− 1), are relatively small in Landsat data, due to the narrow 15° 

sensor field of view and also because the acquisition view zenith angle is usually less than 

the solar zenith angle and so Landsat reflectance hot-spot effects do not occur (Zhang et al. 

2016). However, across the Landsat swath the red and NIR reflectance can vary by up to 

0.02 and 0.06 (reflectance units) due only to view variation effects (Roy et al. 2016a). 

These differences may constitute a significant source of noise for certain Landsat 

applications. 

 
Landsat nadir BRDF-adjusted reflectance (NBAR) is derived from the surface reflectance 

(Section 2.3.2) using a semi-physical approach (Roy et al. 2016a) as: 

 

̂
Landsat 

(, 
nbar 

, 
nbar 

) = c  
Landsat 

(, 
observed

, 
observed 

) [7] 

c = 
̂

MODIS
(, 

nbar 
, 

nbar 
) 

̂
MODIS

(, 
observed

, 
observed 

) 
 

 
where ̂

Landsat 
(, 

nbar 
, 

observed 
) 

 
is the Landsat NBAR for wavelength λ for a 0˚ view 

zenith ( nbar ) and a defined optimal solar geometry ( nbar ), Landsat (, observed, observed ) is 

the reflectance of a Landsat observation with viewing and solar illumination vectors 

observed,
observed ,  and ̂

MODIS is the modeled reflectance for these angles computed at 

coarser spatial resolution using fixed global MODIS BRDF parameters described in (Roy 

et al. 2016a). The adjustment of surface reflectance to NBAR is conservative, i.e., it under- 

corrects BRDF effects, and has low sensitivity to the land cover type, condition, or surface 

disturbance. This is important as over the decadal GWELD product time series land cover, 

land use, and surface condition may have changed. 

 
The optimal solar zenith in [7] is defined based on an established astronomical model 
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(Blanco-Muriel et al. 2001) parameterized by the latitude, longitude, acquisition date and 
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a latitude-varying local time parameterized by a polynomial function of latitude (Zhang et 

al. 2016).  The solar azimuth is not defined as the viewing zenith is set as 0˚. 

 
The surface NBAR derived as [7] for each reflective Landsat band is stored as a signed 16- 

bit integer after being scaled by 10,000, in the same manner as the MODIS surface 

reflectance product (Vermote et al. 2002). 

 

2.3.4 Normalized Difference Vegetation Index computation 

The normalized difference vegetation index (NDVI) is the most commonly used vegetation 

index, derived as the near-infrared minus the red reflectance divided by their sum (Tucker 

1979). The 30 m surface NBAR NDVI is computed from the red and near-infrared Landsat 

surface reflectance NBAR and is stored as signed 16-bit integers after being scaled by 

10,000, in the same manner as the MODIS NDVI product (Huete et al. 2002). 

 

2.3.5 TOA brightness temperature computation 

For both the pre-Collection and Collection-1 data, the digital numbers stored in the Landsat 

image are first converted to spectral radiance (units: W m-2 sr-1 μm-1) and the radiance 

sensed in the Landsat thermal bands are converted to TOA brightness temperature (i.e., 

assuming unit surface emissivity) using standard formula as: 

T = 
K2

 

log(K1 / L +1) 

[8] 

where T is the 10.40-12.50m TOA brightness temperature (Kelvin), K1 and K2 are thermal 

calibration constants set as values in Table 7 in (Chander et al 2009), and Lλ is the TOA 

spectral radiance. This equation is an inverted Planck function simplified for the 

TM/ETM+ sensor considering the thermal band spectral responses. Landsat thermal 

calibration constants are derived in the conventional manner considering the thermal band 

spectral responses (Chander et al. 2009) and used to derive calibrated TOA brightness 

temperature, i.e., the temperature of the observed surface if it was a perfect black body. 



GWELD: ATBD July 2019 

16 

 

 

The 30 m TOA brightness temperature data are stored as signed 16-bit integers with units 

of degrees Celsius by subtracting 273.15 from the brightness temperature and then scaling 

by 100. 

 
2.4. Band saturation computation 

 
The Landsat TM/ETM+ calibration coefficients are configured in an attempt to globally 

maximize the range of land surface spectral radiance in each spectral band (Markham et al. 

2006). However, highly reflective surfaces, such as snow and clouds, may over-saturate 

the reflective wavelength bands, with saturation varying spectrally and with the 

illumination geometry (solar zenith and surface slope) (Cahalan et al. 2001, Bindschadler 

et al. 2008). Similarly, hot surfaces may over-saturate the thermal bands (Flynn and 

Mouginis-Mark 1995), and cold surfaces may under-saturate the high-gain thermal band 

(Landsat Handbook, Chapter 6). Over and under-saturated pixels are designated by digital 

numbers of 255 and 1 respectively in the L1T data. As the radiance values of saturated 

pixels are unreliable, a 30 m 8-bit saturation mask is generated, storing bit packed band 

saturation (1) or unsaturated (0) values for the eight Landsat bands. 

 

 

 
2.5 Cloud masking 

 
It is well established that optically thick clouds preclude optical and thermal wavelength 

remote sensing of the land surface but that automated and reliable satellite data cloud 

detection is not trivial (Kaufman 1987, Platnick et al. 2003). Recognizing that cloud 

detection errors, both of omission and commission, will always occur in large data sets, 

both the Landsat automatic cloud cover assessment algorithm (ACCA) and a classification 

tree based cloud detection approach are implemented. 

2.5.1 ACCA cloud detection 

The U.S. Landsat project uses an automatic cloud cover assessment algorithm (ACCA) to 

estimate the cloud content of each acquisition (Irish 2000, Irish et al. 2006). The ACCA 

takes advantage of known spectral properties of clouds, snow, bright soil, vegetation, and 

water, and consists of twenty-six filters/rules applied to 5 of the 8 TM/ETM+ bands (Irish 
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et al. 2006). The primary goal of the algorithm is to quickly produce scene-average cloud 

cover metadata values, that can be used in future acquisition planning (Ardvidson et al. 

2006), and that users may query as part of the Landsat browse and order process. The 

ACCA was not developed to produce a “per-pixel” cloud mask; despite this, the ACCA 

has an estimated 5% error for 98% of the global 2001 ETM+ acquisitions archived by the 

U.S. Landsat project. 

 
 

The ACCA code is applied to every Landsat TM/ETM+ acquisition to produce a 30 m per- 

pixel cloud data layer, stored as an unsigned 8-bit integer. 

 

2.5.2 Classification tree cloud detection 

The state of the practice for automated satellite land cover classification is to adopt a 

supervised classification approach where a sample of locations of known land cover classes 

(training data) are collected. The optical and thermal wavelength values sensed at the 

locations of the training pixels are used to develop statistical classification rules, which are 

then used to map the land cover class of every pixel. Classification trees are hierarchical 

classifiers that predict categorical class membership by recursively partitioning data into 

more homogeneous subsets, referred to as nodes (Breiman et al. 1984). They accommodate 

abrupt, non-monotonic and non-linear relationships between the independent and 

dependent variables, and make no assumptions concerning the statistical distribution of the 

data (Prasad et al. 2006). Bagging tree approaches use a statistical bootstrapping 

methodology to improve the predictive ability of the tree model and reduce over-fitting 

whereby a large number of trees are grown, each time using a different random subset of 

the training data, and keeping a certain percentage of data aside (Breiman 1996). 

Conventionally multiple bagged trees are used to independently classify the satellite data 

and the multiple classifications are combined using some voting procedure. A single 

parsimonious tree from multiple bagged trees was developed so that only one tree was used 

to classify the Landsat data, reducing the GWELD computational overhead. 

 
 

Supervised classification approaches require training data. A global database of Landsat 

Level 1T and corresponding spatially explicit cloud masks generated by photo- 
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interpretation of the reflective and thermal bands were used. This database was developed 

to prototype the cloud mask algorithm for Landsat 8 (Irons and Masek 2006). The Landsat 

interpreted cloud mask defines each pixel as thick cloud, thin cloud, cloud shadow or not- 

cloudy. These interpreted cloud states were reconciled into cloud (i.e., thick and thin cloud) 

and non-cloud (i.e. cloud shadow and not cloudy states) classes. In addition, to avoid mixed 

pixel cloud edge problems, the cloud labeled regions were morphologically eroded by one 

30 m pixel and not used. A 0.5% sample of training pixels was extracted randomly from 

each Landsat scene, where data were present and not including the cloud boundary regions. 

A total of 88 northern hemisphere Landsat scenes acquired in polar (19 acquisitions), 

boreal (22 acquisitions), mid-latitude (24 acquisitions) and sub-tropical latitudinal zones 

(23 acquisitions) were sampled. The sampled Landsat data were processed to TOA 

reflectance, brightness temperature and the band saturation flag computed as described 

above. Only pixels with reflectance greater than 0.0 were used. A total of 12,979,302 

unsaturated training pixels and 5,374,157 saturated training pixels were extracted. 

 
 

Two classification trees; one for saturated training data and the other for the unsaturated 

training data were developed. The saturated TOA reflectance and brightness temperature 

values are unreliable but still provide information that can be classified. Consequently, 

better cloud non-cloud discrimination is afforded by classifying the saturated and 

unsaturated pixels independently. 

 
 

For both the saturated and unsaturated classification trees, all the 30 m TOA reflective 

bands were used, except the shortest wavelength blue band which is highly sensitive to 

atmospheric scattering (Ouaidrari and Vermote 1999). The unsaturated classification tree 

also used reflective band simple ratios similar to those used by ACCA (Irish et al. 2006). 

The saturated classification tree did not use band ratios as they could not be computed when 

one or both bands in the ratio formulation were saturated. 
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Twenty five bagged classification trees were generated, running the Splus tree code on a 

64 bit computer, each time, 20% of the training data were sampled at random with 

replacement and used to generate a tree. Each tree was used to classify the remaining (“out- 

of-bag”) 80% of the training data, deriving a vector of predicted classes for each out-of- 

bag pixel. In this way, each training pixel was classified 25 or fewer times. The most 

frequent predicted class (cloud or non-cloud) for each training pixel was derived; and used 

with the corresponding training data to generate a single final tree, i.e. the final tree was 

generated using approximately 25 × 0.8 × n training pixels, where n was either the 

12,979,302 unsaturated training pixels or the 5,374,157 saturated training pixels. To limit 

overfitting, all the trees were terminated using a deviance threshold, whereby additional 

splits in the tree had to exceed 0.02% of the root node deviance or tree growth was 

terminated. The final unsaturated and saturated classification trees were defined by 1595 

nodes that explained 98% of the tree variance and 188 nodes that explained 99.9% of the 

tree variance respectively. These are used to classify every Landsat pixel according to its 

saturation status. The 30 m cloud classification results are stored as an unsigned 8-bit 

integer. 

 
2.6 Reprojection, resampling and tiling 

 
 

The processed data are reprojected from UTM image coordinates into global sinusoidal 

tiles nested within the 10° × 10° MODIS land product tiles (Figure 4) so it is 

straightforward to compare the 30 m GWELD products with any of the standard gridded 

MODIS land products (Wolfe et al. 1998; Justice et al. 2002). The sinusoidal projection is 

(i) uninterrupted, (ii) equal area, and (iii) has less pixel loss and duplication compared to 

other global equal-area projections (Seong et al. 2002; Mulcahy 2000). 
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Figure 4 Illustration of nested Global WELD tiles (white) and the MODIS tiles (red) for 

North American 20°N to 50°N. This example is composed of 561 GWELD 5295 × 5295 

30 m pixel tile boundaries (white) that are spatially nested within 14 standard MODIS land 

10° × 10° tile boundaries (red) defined in the sinusoidal equal area projection. The 

background shows for geographic context the year 2010 version 3.0 GWELD true color 

surface NBAR product. Figure from Zhang and Roy (2017). 

 
 

It is not physically possible to store global 30 m data in a single file. To ensure manageable 

file sizes, the 30 m Landsat data are reprojected into global sinusoidal tiles. Each GWELD 

tile is composed of 5295 × 5295 30 m Landsat pixels. There are 7 × 7 GWELD tiles within 

each 10° × 10° MODIS land tile (Figures 4 and 13). This tile pixel dimension (number of 

rows and columns) is smaller than the dimensions of an individual Landsat image. 

 
 

The Landsat pixels are allocated to the sinusoidal coordinate system using the inverse 

gridding approach, sometimes known as the indirect method (Konecny 1979). In this 

approach the center coordinates of each sinusoidal 30 m pixel are mapped to the nearest 

pixel center in the Landsat data, and the TM/ETM+ processed data for that pixel are 

allocated to the sinusoidal output grid. This processing approach is computationally 

efficient and geometrically is the equivalent of nearest neighbor resampling (Wolfe et al. 

1998). The General Cartographic Transformation Package (GCTP) developed by the 
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USGS and used to develop a number of applications including the MODIS global browse 

imagery (Roy et al. 2002) is used to transform coordinates between the UTM and sinusoidal 

map projections. The GCTP is computationally expensive. Consequently, a sparse 

triangulation methodology was used where the GCTP is invoked to project sinusoidal 30 

m pixels to UTM coordinates only at the vertices of triangles, and sinusoidal 30 m pixel 

locations falling within the triangles are projected to UTM coordinates using a simplicial 

coordinate transformation (Saalfeld 1985). In this approach, any point (px, py) in a triangle 

with vertices (x1, y1), (x2, y2), (x3, y3) can be represented by three simplicial coordinates 

(s1,s2,s3) defined: 

s1 = a1 py + b1 px + c1 

s2 = a2 py + b2 px + c2 [9] 

s3 = 1 - s1 - s2 
 

where  

a1 = (x3 - x2)/t a2 = (x1 - x3)/t 

b1 = (y2 - y3)/t b2 = (y3 - y1)/t 

c1 = (x2 y3 - x3 y2)/t c2 = (x3 y1 - x1 y3)/t 

t = x1 y2 + x2 y3 + x3 y1 - x3 y2 - x2 y1 – x1 y3 

Given a point (px, py) defined in sinusoidal coordinates the corresponding location in UTM 

coordinates is: 

p' = s x' + s x' + s x' [10] 

x 1   1 2   2 3   3 

p' = s y ' + s y' + s y' 
y 1   1 2    2 3   3 

 

where (x' , y' ),(x' , y' ),(x' , y' ) are the coordinates of the triangle vertices in UTM calculated 
1     1 2 2 3 3 

by projecting the corresponding sinusoidal triangle vertices (x1, y1), (x2, y2), (x3, y3) using 

the GCTP. A regular lattice of triangles is defined by bisecting squares with side lengths 

of 450 m (i.e., fifteen 30 m pixels) defined from the north-west origin of the sinusoidal 

coordinate system so that in each square there were two triangles with different topologies. 

This approach is computationally efficient as the GCTP is only called for each triangle 

vertex and the coefficients a, b, c and t are computed only once for each triangle. 
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2.7 Temporal compositing 

 
Compositing procedures are applied independently on a per-pixel basis to gridded satellite 

time series and provide a practical way to reduce cloud and aerosol contamination, fill 

missing values, and reduce the data volume of moderate resolution global near-daily 

coverage satellite data (Cihlar 1994). Compositing was developed originally to reduce 

residual cloud and aerosol contamination in AVHRR time series to produce representative 

n-day data sets (Holben 1986). Compositing criteria have included the maximum NDVI, 

maximum brightness temperature, maximum apparent surface temperature, maximum 

difference in red and near-infrared reflectance, minimum scan angle, and combinations of 

these (Roy 2000). Ideally, the criteria should select from the time series only near-nadir 

observations that have reduced cloud and atmospheric contamination. Composites 

generated from wide field of view satellite data, such as AVHRR or MODIS, often contain 

significant BRDF effects (Cihlar et al. 1994, Gao et al. 2002, Roy et al. 2006). Compositing 

algorithms that model BRDF have been developed to compensate for this problem and 

combine all valid observations to estimate the NBAR (Schaaf et al. 2002). However, this 

approach does not provide a solution for compositing thermal wavelength satellite data, 

and is less appropriate for application to Landsat data as the comparatively infrequent 16 

day Landsat repeat cycle and the narrow 15º Landsat sensor field of view do not provide a 

sufficient number or angular sampling of the surface to invert bidirectional reflectance 

models (Danaher et al. 2001, Roy et al. 2008). Consequently, the GWELD compositing is 

based on the selection of a “best” pixel over the compositing period. 

 

The GWELD compositing is applied before atmospheric correction, i.e. to the TOA 

reflectance, because (i) atmospheric correction is imperfect (Ju et al. 2012) and (ii) because 

in this way only the composited gridded WELD pixel values need to be atmospherically 

corrected rather than every pixel in every input Landsat L1T acquisition (Roy et al. 2014b). 

Table 1 summarizes the GWELD compositing logic. 
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Table 1 GWELD compositing criteria. nvalid is the number of the valid (non-filled, non- 
saturated and non-cloudy) observations over the composition period; nwater is the number 
of the water (valid, but DT cloud state is 200 OR 𝜌1 > 𝜌2 > 𝜌3 > 𝜌4 ) 

𝑇𝑂𝐴 𝑇𝑂𝐴 𝑇𝑂𝐴 𝑇𝑂𝐴 

observations over the composition period; nsoil is the number of the soil (valid, non-water, 
𝜌2 ≤ 𝜌3 ≤ 𝜌4 ≤ 𝜌5 ) observations over the composition period; nsnow is the 
𝑇𝑂𝐴 𝑇𝑂𝐴 𝑇𝑂𝐴 𝑇𝑂𝐴 

number of the snow (valid, non-water, non-soil and NDSI>0.4) observations over the 
composition period. SAM is the spectral angle mapper (SAM) metric calculated over two 
Landsat TOA spectra using bands TM/ETM+ 2, 3, 4, 5 and 7. Minimum blue means selected 
the observation with the minimal blue band TOA reflectance. The maximum weighted 
NDVI and ND51 will be detailed in the below paragraph. 

 
Priority Compositing selection criteria 

1 If nvalid=0: minimum blue over all observations 

2 If nvalid=1 & (nwater==1 OR nsnow==1): minimum blue over all observations 

3 If nvalid=1 & (nwater==0 & nsnow==0): valid observation 

4 If nvalid=2 & nwater==2: minimum blue over the two valid observations 

5 If nvalid=2 & nwater==1 & nsoil==0: 

(1) if SAM > 0.7: minimum blue over the two valid observations 

(2) else: maximum weighted NDVI and ND51 

6 If nvalid=2 & nwater==1 & nsoil==1: 

(1) if SAM ≤ 0.7: minimum blue over the two valid observations 

(2) else: maximum weighted NDVI and ND51 

7 If nvalid=2 & nwater==0: maximum weighted NDVI and ND51 

8 If nvalid>2: (1) if nwater/nvalid ≥ 0.5: minimum blue over the valid observations 

(2) else: maximum weighted NDVI and ND51 

 

Each row of Table 1 reflects a unique compositing path. If the criterion in a row is not met 

then the criterion in the row beneath is used and this process is repeated until the last row. 

This implementation enables the composites to be updated on a per pixel basis shortly after 

the input TM/ETM+ data are processed and regardless of the chronological processing 

order. For example, after 16 days the same pixel location may be sensed again, and the 

compositing criteria are used to decide if the more recent TM/ETM+ pixel data should be 

allocated to overwrite the previous data. For each composited pixel, the day of the year 
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that the selected pixel was acquired on, and the number of different valid acquisitions 

considered at that pixel over the compositing period, are stored in the GWELD product. 

 
 

In Table 1, the maximum weighted NDVI and ND51 parameters are used to improve the 

original (version 2.2) CONUS WELD compositing approach that was based on a maximum 

NDVI compositing heritage (Roy et al. 2010). Figure 5 illustrates the improvement over 

the original version 2.2. The ND51 is derived in a similar way to NDVI but replacing the 

red and NIR bands with the Landsat TM/ETM+ band 1 (blue) and 5 (SWIR). 

 
 

 
Figure 5 Illustration of Version 2.2 compositing results (left) and refined Version 3.x 

(right) compositing applied to Landsat 7 ETM and Landsat 5 TM data for a 400 by 400 30 

m pixel subset over Columbia River Valley, Eastern Washington state, sensed July 2010. 

A total of five Landsat 7 and two Landsat 5 input scenes were composited. Issues with soil 

variations, shadows and cloud over water are notably improved. 

 

 
The weights for the NDVI and ND51 are stored in a Look Up Table (LUT) of atmospheric 

effects derived by comparing Landsat 5 and 7 TOA and LEDAPS surface reflectance of 

more than 200 million 30 m pixels for three summer months and three winter months over 

CONUS (Roy et al. 2016b). Using fixed LUTs to characterize the atmospheric effects can 

avoid abnormal values in the surface reflectance NDVI and ND51 derived using image 

based atmospheric profile characterizations (Roy et al. 2014b). The NDVI and ND51 
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weights are inversely weighted so as to (1) select healthy vegetated pixels when the surface 

is vegetated (high NDVI weights for high NDVI values), (2) select bright surfaces when 

the NDVI starts to be meaningless for non-vegetated surface (low NDVI weights for low 

NDVI values). 

 
The GWELD cloud masks are used to complement the maximum NDVI and ND51 

criterion and to provide a more reliable differentiation between clouds and the land surface. 

The two cloud masks do not always agree, but it is not possible to quantitatively evaluate 

their relative omission and commission errors as a function of different clouds and 

background reflectance and brightness temperature. Consequently, a pixel is considered 

cloudy and non-cloudy if both the ACCA and the Classification Tree algorithms detected 

it as cloud and non-cloud respectively, and a pixel is considered as uncertain cloud if only 

one cloud algorithm detected it as cloudy. 

 
 

The above compositing algorithm is applied to the TOA reflectance data. However, after 

compositing, the NBAR surface reflectance for the selected pixels is recorded in the output 

GWELD product, rather than the TOA reflectance. This swapping procedure (Roy et al. 

2014b) is illustrated in Figure 6, showing the composited TOA reflectance (top left) and 

the output composited NBAR surface reflectance (bottom left). The swapping uses 30 m 

pixel provenance information that includes an index value (0, 1, … 255) that is stored at 

each GWELD product tile location (Figure 6, top right) that refers to the Landsat input 

image filename. In addition, the column and row locations in the input Landsat image (0 

to the maximum dimension of the input Landsat image) that the composited pixel was 

selected from are stored as GWELD product bands and are used in the swapping process. 

Importantly, these information also provide traceability of the input data provenance. 
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Figure 6 Illustration of composting swapping algorithm for a 400 × 400 30 m pixel subset 

of a July 2000 monthly GWELD product over the Strait of Juan de Fuca (located on the 

west coast international boundary between Canada and the United States and GWELD tile 

hh09v04.h6v1). The composited was generated from five Landsat 5 and 7 acquisitions. Top 

Left shows the composited top of atmosphere (TOA) true color red (0.63~0.69 μm), green 

(0.53~0.61 μm) and blue (0.45~0.52 μm), reflectance; Top right shows the L1T filename 

index values that the top left composted TOA reflectance is selected from (blue acquired 

on July 6 and 7, spring green acquired on July 14 and 15; and red acquired on July 30 

2000); Bottom Left shows the swapped atmospherically corrected NBAR equivalent of the 

TOA data using the L1T index (top right) and the L1T pixel column and row coordinates 

(not shown here). 



GWELD: ATBD July 2019 

27 

 

 

2.8 GWELD Global Imagery Browse Services (GIBS) generation 

 
The Global Imagery Browse Services (GIBS) is a core NASA EOSDIS component that 

provides a scalable, responsive, highly available, and community standards based set of 

imagery services. Monthly and annual Global WELD 30 m Version 3.0 GIBS browse 

image products defined in the Geographic (i.e. latitude/longitude) projection were 

generated and are available in NASA Worldview (Figure 7). 

 

Figure 7 GIBS browse of the global WELD annual Version 3.0 30 m product for climate 

year 2009 in the NASA GIBS (see https://worldview.earthdata.nasa.gov/ or more directly 

https://go.nasa.gov/2kLcKto ). 
 

False color GIBS browses that highlight burned-areas (2.22, 0.83, 0.66 micron false color 

Red, Green, Blue bands) and snow/ice surfaces (0.48, 1.65, 2.2 micron false color Red, 

Green, Blue bands) were also generated.  Figures 8 and 9 show examples. 

Field Code Changed

https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/
https://
http://go.nasa.gov/2kLcKto
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Figure 8 GIBS browses of the global WELD annual Version 3.1 30 m product for climate 

year 2000; true color (red, green, blue) bands (top) and surface NBAR NDVI (bottom). 
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Figure 9 GIBS browses of the global WELD annual Version 3.1 30 m product for climate 

year 2000; false color bands that highlight snow/ice surfaces (0.48, 1.65, 2.2 micron bands) 

(top) and highlight burned-areas (2.22, 0.83, 0.66 micron false color bands) (bottom). 
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3.0 VERSION 3.x PRODUCT DOCUMENTATION 

 

3.1 Product storage format and contents 

 

The GWELD products are stored in Hierarchical Data Format (HDF), a self-descriptive 

data file format designed by the National Center for Supercomputing Applications to assist 

users in the storage and manipulation of scientific data across diverse operating systems 

and machines. 

 
The version 3.0 GWELD 2010 epoch products (36 monthly products and annual products 

for 2009, 2010 and 2011) are defined in HDF4, the other version 3.1 GWELD epochs are 

defined in HDF4EOS. 

 
The products are generated in separate 5295 × 5295 30 m pixel tiles. Each GWELD product 

tile is composed of 24 bands (24 HDF science data sets) stored with appropriate data types 

to minimize the file size and with band-specific attributes (fill value, scale factor, units, valid 

range) (Table 2). Each GWELD product tile carries the default HDF metadata and a number 

of product specific metadata that summarize the pixels in each tile (Table 3). 
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Table 2 GWELD product 30 m bands 

Band Name 
Data 
Type 

Valid 
Range 

Scale 
factor 

Units 
Fill 
Value 

Notes 

Band1_SRF_REF int16 
-2000 to 
16000 

0.0001 Unitless -32768 
The conventional Landsat 4/5/7 band 
numbering scheme is used. 
Surface reflectance (SRF) derived using 

the LEDAPS atmospheric correction 
code and then subsequently BRDF 
adjusted to nadir view (0 degree view 
zenith) with a modelled solar zeith 
defined in NBAR_Solar_Zenith. 

 
Top of atmosphere (TOA) brightness 
temperature (BT) is computed using 
standard formulae and calibration 
coefficients associated with each 
acquisition. 
Band 6 brightness temperature data 
are defined at 30 m. 
The Band62 pixel value is set to FILL if 

the pixel was from Landsat 4 or 5 as 
this band does not exist on the Landsat 
4 and 5 TM sensors. 

Band2_SRF_REF int16 
-2000 to 
16000 

0.0001 Unitless -32768 

Band3_SRF_REF int16 
-2000 to 
16000 

0.0001 Unitless -32768 

Band4_SRF_REF int16 
-2000 to 
16000 

0.0001 Unitless -32768 

Band5_SRF_REF int16 
-2000 to 
16000 

0.0001 Unitless -32768 

Band61_TOA_BT int16 
-32767 -- 
32767 

0.01 
Degrees 
Celsius 

-32768 

Band62_TOA_BT int16 
-32767 -- 
32767 

0.01 
Degrees 
Celsius 

-32768 

 

 

Band7_SRF_REF 

 

 

int16 

 

 

-2000 to 
16000 

 

 

0.0001 

 

 

Unitless 

 

 

-32768 

 

NDVI_SRF 
 

int16 
-10000 -- 
10000 

 

0.0001 
 

Unitless 
 

-32768 
Normalized Difference Vegetation 
Index (NDVI) value generated from 
Band3_SRF_REF and Band4_SRF_REF. 

 

 

 

 
Day_Of_Year 

 

 

 

 
int16 

 

 

 

 
1 -- 366 

 

 

 

 
1 

 

 

 

 
Day 

 

 

 

 
0 

Day of year the selected Landsat pixel 
was sensed on. Note (a) days 1-334 (or 
1-335) were sensed in January- 
November of the nonleap (or leap) 
current year; (b) days 335-365 (or 336- 
366) were sensed in December of the 
nonleap (or leap) previous year; (c) in 
the annual composite of a leap year, 
day 335 always means November 30. 

 

 
Saturation_Flag 

 

 
uint8 

 

 
0 -- 255 

 

 
1 

 

 
Unitless 

 

 
None 

The least significant bit to the most 
significant bit corresponds to bands 1, 
2, 3, 4, 5, 61, 62, 7; with a bit set to 1 
signifying saturation in that band and 0 
not saturated. 

 

DT_Cloud_State 

 

uint8 

 

0, 1, 2, 
200 

 

1 

 

Unitless 

 

255 

Decision Tree Cloud Classification, 0 = 
not cloudy, 1 = cloudy, 2 = not cloudy 
but adjacent to a cloudy pixel, 200 = 
could not be classified reliably. 

ACCA_State uint8 0, 1 1 Unitless 255 
ACCA Cloud Classification, 0 = not 
cloudy, 1 = cloudy. 
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Num_Of_Obs uint16 
0 -- 
65535 

1 Unitless None 
Number of observations considered 
over the compositing period. 

Composite_Path uint8 0 to 15 1 Unitless 255 
Internal compositing algorithm 
pathway code. 

 
Sensor 

 
uint8 

 
4, 5, or 7 

 
1 

 
Unitless 

 
255 

Landsat satellite that the pixel was 
selected from (4 = Landsat 4 TM, 5 = 
Landsat 5 TM, 7 = Landsat 7 ETM+) 

Sensor_Zenith int16 
0 to 
9000 

0.01 Degrees -32768 Sensor_Zenith (nadir = 0 degrees). 

Sensor_Azimuth int16 
-18000 
to 18000 

0.01 Degrees -32768 Sensor_Azimuth. 

Solar_Zenith int16 
0 to 
9000 

0.01 Degrees -32768 
Solar_Zenith of pixel observation 
(directly overhead = 0 degrees). 

NBAR_Solar_Zenith int16 
0 to 
9000 

0.01 Degrees -32768 
Solar_Zenith used for NBAR generation 
of pixel surface refelectance value. 

Solar_Azimuth int16 
-18000 
to 18000 

0.01 Degrees -32768 Solar_Azimuth. 

 

L1T_Index 

 

uint16 

 
0 to 
65534 

 

1 

 

Unitless 

 

65535 

Index to the L1T image that the pixel 
was selected from (reference 
L1T_Index_Metadata to find the Level 
1T filename). 

L1T_Column uint16 
0 to 
10000 

1 Unitless 65535 
Pixel column number in the input Level 
1T image. 

L1T_Row uint16 
0 to 
10000 

1 Unitless 65535 
Pixel row number in the input Level 1T 
image. 
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Table 3 GWELD product metadata 

Name 
Data 
Type 

Valid Range Units Description 

PRODUCT_VERSION String N/A Unitless 
Product version number (3.0., …) also 
reflected in the filename. 

 

PGE_VERSION 

 

String 

 

N/A 

 

Unitless 

Internal version number of Product 
Generation Executive used to produce 
particular tile, not necessarily reflected in 
the filename. 

INPUT_POINTER String N/A Unitless 
Internal list of input filenames used for 
production. 

 

 
L1T_Index_Metadata 

 

 
String 

 

 
N/A 

 

 
Unitless 

List of Level 1T filenames and indices 
(reference with L1T_Index band pixel 
value) and the corresponding Level 1T 
image MTL file specified center solar 
zenith and solar azimuth values. 

 

Mean_B1 
 

Float 
 

-0.1 to 1.0 
 

Unitless 
Mean band 1 reflectance computed from 
all non-fill and non-cloudy (ACCA == 0 && 
DT != 1) pixels in the tile. 

 
Mean_B2 

 
Float 

 
-0.1 to 1.0 

 
Unitless 

Mean band 2 reflectance computed from 
all non-fill and non-cloudy (ACCA == 0 && 
DT != 1) pixels in the tile. 

 
Mean_B3 

 
Float 

 
-0.1 to 1.0 

 
Unitless 

Mean band 3 reflectance computed from 
all non-fill and non-cloudy (ACCA == 0 && 
DT != 1) pixels in the tile. 

 
Mean_B4 

 
Float 

 
-0.1 to 1.0 

 
Unitless 

Mean band 4 reflectance computed from 
all non-fill and non-cloudy (ACCA == 0 && 
DT != 1) pixels in the tile. 

 
Mean_B5 

 
Float 

 
-0.1 to 1.0 

 
Unitless 

Mean band 5 reflectance computed from 
all non-fill and non-cloudy (ACCA == 0 && 
DT != 1) pixels in the tile. 

 

Mean_B6 

 

Float 

 

-200 to 300 

 
Degrees 
Celsius 

Mean band 6 brightness temperature 
computed from all non-fill and non- 
cloudy (ACCA == 0 && DT != 1) pixels in 
the tile 

 
Mean_B7 

 
Float 

 
-0.1 to 1.0 

 
Unitless 

Mean band 7 reflectance computed from 
all non-fill and non-cloudy (ACCA == 0 && 
DT != 1) pixels in the tile. 

 

Mean_NDVI 
 

Float 
 

-0.1 to 1.0 
 

Unitless 
Mean NDVI computed from all non-fill 
and non-cloudy (ACCA == 0 && DT != 1) 
pixels in the tile. 

Mean_Solar_Zenith Float 0 to 90 Degrees 
Mean solar zenith angle computed from 
all non-fill pixels in the tile. 

Mean_NBAR_Solar_Zenith Float 0 to 90 Degrees 
Mean NBAR solar zenith angle computed 
from all non-fill pixels in the tile. 
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Percent_Saturated 

 
Float 

 
0.0 to 100.0 

 
Percentage 

Percentage of non-fill pixels in the tile 
that were flagged as saturated in any 
band (Saturation_Flag != 0). 

 
Percent_ACCA_Cloudy 

 
Float 

 
0.0 to 100.0 

 
Percentage 

Percentage of non-fill pixels in the tile 
that were flagged as ACCA Cloudy (ACCA 
== 1). 

 
Percent_DT_Cloudy 

 
Float 

 
0.0 to 100.0 

 
Percentage 

Percentage of non-fill pixels in the tile 
that were flagged as DT cloudy (ACCA == 
1). 

Mean_JDOY Int 1 to 366 Day 
Mean Julian Day of Year of non-fill pixels 
in the tile. 

Min_JDOY Int 1 to 366 Day 
Minimum Julian Day of Year of non-fill 
pixels in the tile. 

Max_JDOY Int 1 to 366 Day 
Maximum Julian Day of Year of non-fill 
pixels in the tile. 

Number_Valid_Obs Int 0 to 28037025 Count The number of non-fill pixels in the tile. 

Number_Valid_Noncloudy_ 
Obs 

Int 0 to 28037025 Count 
The number of non-fill and non-cloudy 
(ACCA == 0 && DT != 1) pixels in the tile. 

Count_L1T Int 0 to 10000 Count 
Count of the number of unique L1T 
images present in the tile. 

Sensor_List String 4 | 5 or 5 | 7 Unitless 
List of Landsat satellites present in the 
tile. 

Number_Valid_Sensor_Obs String 
0 to 28037025 | 
0 to 28037025 

Count 
The number of non-fill pixels in the tile 
for each satellite indexed by Sensor_List. 

 

 

 

3.2 Product reporting periods 

 
The GWELD products are available as monthly and annual composited products. Both the 

monthly and annual products contain the same 24 bands (Table 2) and metadata (Table 3). 

They are defined in a temporally nested manner following climate modeling conventions 

where a year is defined by the December of the previous calendar year, and then January 

to November of the current year (Table 4). 

 
 

Table 4 GWELD product types 

Product Type Temporal Definition 

Annual The preceding year's December through the current year's November. 

Monthly The days in each calendar month 
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Figures 10 and 11 show example global true color, red (0.63-0.69m), green (0.53- 

0.61m) and blue (0.45-0.52m), browse images for the monthly and annual composites 

respectively. All the L1T TM/ETM+ data acquired in each temporal period are composited; 

for the longer periods more L1T data are available and so there are less gaps and less 

obvious cloudy data. 

 

Figure 10 Example monthly GWELD composite (July 2000). 
 

Figure 11 Example annual GWELD composite (Annual 2000). 
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3.3 Product map projection and tiling scheme 

 
The GWELD products are defined in the same coordinate system and align precisely with 

the MODIS land products tiles. The GWELD products are defined in the equal area 

sinusoidal projection. The projection parameters for the USGS General Cartographic 

Tansformation Package (GCTP) are summarized in Table 5. The datum is World Geodetic 

System 84 (WGS84).  The most upper left pixel coordinate is defined as: 

ULX = -20015109.3557974174618721, ULY = 10007554.6778987087309361. 
 

 
Table 5. Sinusoidal projection parameters (GCTP format) 

Num Parameter Value Description 

0 Sphere 6371007.181 Radius of reference (meters) sphere 

1-3  0.0 not used 

4 CentMer 0.0 Longitude of the central meridian 

5  0.0 not used 

6 FE 0.0 False Easting in the same units as the sphere radius 

7 FN 0.0 False Northing in the same units as the sphere radius 

8-14  0.0 not used 

 

 

The GWELD products are defined in tiles nested to the standard MODIS land product tiles 

(Figure 4). Figure 12 illustrates the MODIS land product tiles that are defined in a global 

non-overlapping grid of 36 × 18 tiles, each covering approximately 10º × 10º at the Equator 

(Wolfe et al. 1998). A table of the bounding MODIS tile coordinates is provided at 

https://landweb.modaps.eosdis.nasa.gov/cgi-bin/QA_WWW/newPage.cgi?fileName=sn_bound_10deg. 

 

 

 

Within each MODIS 10º × 10º tile there are 7 × 7 GWELD product tiles (Figure 13). Each 

GWELD product tile is composed of 5295 × 5295 30 m pixels. 

https://landweb.modaps.eosdis.nasa.gov/cgi-bin/QA_WWW/newPage.cgi?fileName=sn_bound_10deg
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Figure 12 MODIS land product tiling scheme. Each 10º × 10º tile is referenced by a 

horizontal (0 ≤ h ≤ 35) and vertical (0 ≤ v ≤ 17) coordinate. 

 
 

 
Figure 13 MODIS tile (h31v10), Gulf of Carpentaria, Australia, October 2009 data. Left: 

MODIS NBAR 500 m true color surface reflectance; Right: Landsat 5 and 7 GWELD 

NBAR 30 m true color surface reflectance composite, with the 7 × 7 global WELD tile 

boundaries superimposed (magenta). Each GWELD tile is referenced within the MODIS 

tile by a horizontal (0 ≤ x ≤ 6) and vertical (0 ≤ y ≤ 6) coordinate. 
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3.4 Product file naming convention 
 
 

Table 6 Version 3.X GWELD Product filename convention - descriptive, simple, and amenable 
to scripting 

L<ss>.Globe.<period>.<year>.hh<xx>vv<yy>>.h<x>v<y>.doy<min DOY>to<max 
DOY>.NBAR.v<version number>.hdf 

 Valid Range Notes 

<ss> 04 / 05 / 07 / 45 / 57 
Combination of contemporaneous Landsat 
sensors (4, 5, 7) used in the product. 

 

 

<Period> 

annual 

 

month01/month02/, 
…,/month12 

Annual products are generated from a year 
of Landsat data sensed from December 1st 
of the previous year to November 30th of 
the current year. Monthly products 
generated from the Landsat data sensed in 
that month. 

 

<Year> 

 

1983, 1984, ... , 2011 

Year the data sensed (monthly products). 
 

Year the January to November data sensed 
(annual products). 

<xx> 00, 01, ..., 35 Horizontal MODIS land tile coordinate. 

<yy> 00, 01, ..., 17 Vertical MODIS land tile coordinate. 

<x> 0, 1, …, 6 
Horizontal WELD tile coordinate within the 
MODIS land tile. 

<y> 0, 1, …, 6 
Vertical WELD tile coordinate within the 
MODIS land tile. 

<min DOY> 001, 002, …, 366 
Minimum non-fill Day_Of_Year pixel value 
present in the tile. 

<max DOY> 001, 002, …, 366 
Maximum non-fill Day_Of_Year pixel value 
present in the tile. 

 

<Version Number> 
 

3.0, … 
Major and minor algorithm version changes 
reflected in the first and second digits 
respectively. 

 

 

3.5 GWELD product data volume 

 

The HDF format tiles are stored with HDF internal compression on and are typically 280 

MB and 370 MB for each monthly and annual tile product, respectively. The annual 

products have greater file sizes since there are fewer fill value pixels. The total number of 

monthly composited files is around ~80,000/year and the total volume about >20TB/year. 

The total number of annual composited files is around ~8,000/year and the total volume 

about >3TB/year. 
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4.0 Known issues 

 

The version 3.0 GWELD 2010 epoch products (36 monthly products and annual products 

for 2009, 2010 and 2011) are defined in HDF4, the other GWELD epochs are defined in 

HDF4EOS. Consequently, the version 3.0 GWELD 2010 epoch HDF product geographic 

coordinates cannot be read correctly by GDAL/ArcGIS. This is not an issue for the version 

3.1 GWELD products. 

 
 

The version 3.0 GWELD 2010 epoch product geographic coordinates (ax, ay) for the center 

of a pixel (icol, irow) can be determined in the following ways: 

 
(1) using the tile corner pixel coordinates stored in the metadata 

The tile corner coordinates can be extracted using command line “ncdump –h $file | grep 

sin”. For example: 

 
>ncdump –h L57.Globe.month01.2009.hh25vv04.h6v5.doy002to027.NBAR.v3.0.hdf | grep sin 

will output the following: 

:sinus_UL_X = 8736753.638365664 ; 

:sinus_UL_Y = 4765502.598832616 ; 

:sinus_UR_X = 8895603.638365664 ; 

:sinus_UR_Y = 4765502.598832616 ; 

:sinus_LL_X = 8736753.638365664 ; 

:sinus_LL_Y = 4606652.598832616 ; 

:sinus_LR_X = 8895603.638365664 ; 

:sinus_LR_Y = 4606652.598832616 ; 

 

Note that these coordinates are defined for the pixel corners, i.e., the UL pixel coordinate 

is the upper left coordinate of the most upper left pixel. Thus: 

ax = sinus_UL_X + 30*(icol+0.5); 

ay = sinus_UL_Y - 30*(irow+0.5); 

 

// +0.5 means these are pixel center coordinates. 

 
(2) using the original coordinates defined for the Sinusoid projection and tile ID 

(modis_tile_h, modis_tile_v, mini_tile_h and mini_tile_v): 

sinus_global.sinus_ULX = -20015109.3557974174618721; 

sinus_global.sinus_ULY = 10007554.6778987087309361; 

sinus_global.modis_tile_size = 1111950.5197665231923262; 

tiledim_nrow=5295; 
tiledim_ncol=5295; 

ax = sinus_global.sinus_ULX + (double)(modis_tile_h * sinus_global.modis_tile_size) + 
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((double)(mini_tile_h * tiledim_ncol + icol) + 0.5) * 30;  /* pixel 

center */ 

ay = sinus_global.sinus_ULY - (double)(modis_tile_v * sinus_global.modis_tile_size) - 

((double)(mini_tile_v * tiledim_nrow + irow) + 0.5) * 30; 

 

// +0.5 means these are pixel center coordinates. 
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